The helix-loop-helix proteins dAP-4 and daughterless bind both in vitro and in vivo to SEBP3 sites required for transcriptional activation of the Drosophila gene Sgs-4.

نویسندگان

  • K King-Jones
  • G Korge
  • M Lehmann
چکیده

The expression of Sgs genes in the salivary gland of the third instar larva of Drosophila is a spatially restricted response to signalling by the steroid hormone 20-hydroxyecdysone. For Sgs-4, we have previously demonstrated that its strictly tissue and stage-specific expression is the result of combined action of the ecdysone receptor and secretion enhancer binding proteins (SEBPs). One of these SEBPs, SEBP2, was shown to be the product of the homeotic gene fork head. Together with SEBP3, SEBP2 appears to be responsible for the spatial restriction of the hormone response of Sgs-4. Here, we show that SEBP3 is a heterogeneous binding activity that consists of different helix-loop-helix (HLH) proteins. We cloned the Drosophila homologue of human transcription factor AP-4 (dAP-4) and identified it as one of these HLH proteins. The dAP-4 protein shows great similarity to its human and Caenorhabditis counterparts within the bHLHZip domain, the second leucine zipper dimerization motif, and a third region of unknown function. The expression pattern of dAP-4 indicates that it is a ubiquitously expressed HLH protein in Drosophila. As a second component of SEBP3 we identified the Daughterless (Da) protein, which is also ubiquitously expressed and binds to SEBP3 sites independent of dAP-4. Since both dAP-4 and Da can be detected in situ at transposed Sgs-4 transcriptional control elements in polytene salivary gland chromosomes, we propose that each of the two proteins contributes to the transcriptional control of Sgs-4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional regulation of the Sex-lethal gene by helix-loop-helix proteins.

Somatic sex determination in Drosophila depends on the expression of Sex-lethal (Sxl), whose level is determined by the relative number of X chromosomes and sets of autosomes (X:A ratio). The first step in regulation of Sxl expression is transcriptional control from its early promoter and several genes encoding transcription factors of the helix-loop-helix (HLH) family such as daughterless (da)...

متن کامل

Salvador-Warts-Hippo pathway in a developmental checkpoint monitoring helix-loop-helix proteins.

The E proteins and Id proteins are, respectively, the positive and negative heterodimer partners for the basic-helix-loop-helix protein family and as such contribute to a remarkably large number of cell-fate decisions. E proteins and Id proteins also function to inhibit or promote cell proliferation and cancer. Using a genetic modifier screen in Drosophila, we show that the Id protein Extramacr...

متن کامل

Evolutionary conservation of a cell fate specification gene: the Hydra achaete-scute homolog has proneural activity in Drosophila.

Members of the Achaete-scute family of basic helix-loop-helix transcription factors are involved in cell fate specification in vertebrates and invertebrates. We have isolated and characterized a cnidarian achaete-scute homolog, CnASH, from Hydra vulgaris, a representative of an evolutionarily ancient branch of metazoans. There is a single achaete-scute gene in Hydra, and the bHLH domain of the ...

متن کامل

Introducing Pitt-Hopkins syndrome-associated mutations of TCF4 to Drosophila daughterless

Pitt-Hopkins syndrome (PTHS) is caused by haploinsufficiency of Transcription factor 4 (TCF4), one of the three human class I basic helix-loop-helix transcription factors called E-proteins. Drosophila has a single E-protein, Daughterless (Da), homologous to all three mammalian counterparts. Here we show that human TCF4 can rescue Da deficiency during fruit fly nervous system development. Overex...

متن کامل

Senseless and Daughterless confer neuronal identity to epithelial cells in the Drosophila wing margin.

The basic helix-loop-helix (bHLH) proneural proteins Achaete and Scute cooperate with the class I bHLH protein Daughterless to specify the precursors of most sensory bristles in Drosophila. However, the mechanosensory bristles at the Drosophila wing margin have been reported to be unaffected by mutations that remove Achaete and Scute function. Indeed, the proneural gene(s) for these organs is n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 291 1  شماره 

صفحات  -

تاریخ انتشار 1999